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This paper presents a ferrite magnet motor design by considering the topological design sensitivity. A level set based topology 

optimization technique is introduced to determine the drawbacks of heuristic or parametric optimization methods such as dependence 
on the initial shape and lack of detailed representation of the boundaries. For multi-material structure design, N level set functions are 
required to represent 2N different materials. Therefore, two level-set functions are required to design a ferrite magnet motor consisting 
of three different materials: a permanent magnet, ferromagnetic material, and air. Six cases are revealed with different sensitivity 
values depending on the selection of the material domains. To compare the six different cases, an optimization problem is formulated 
that minimizes the sum of the difference of the target torque. It is confirmed that the selection of material domains, which has a low 
difference value of sensitivity, is a requirement to achieve optimum design with better performance and better convergence.  
 

Index Terms—Ferrite magnet motor, Level set method, Sensitivity analysis, Topology optimization 
 

I. INTRODUCTION 

HE permanent magnet synchronous motor (PMSM) with a 
rare-earth magnet has been widely used in industrial fields 

due to its high power density. However, the unstable rare-earth 
magnet supply rate is causing its price to fluctuate; hence, a 
design technique for replacing the rare-earth magnet with a 
ferrite magnet in PMSM has recently become a critical issue 
[1]-[2]. To achieve this, an optimization method has to be 
conducted in the design stage of the motor to achieve target 
performance since the residual flux density of the ferrite 
magnet is about one-third of that of a rare-earth magnet. 
Therefore, there has been a research effort to determine the 
optimal shape of the magnet by implementing topology 
optimization.  
The aim of this paper is to present and discuss the design of a 

ferrite magnet motor using a level set based topology 
optimization method considering the different expressions of 
multi-materials such as a ferrite magnet, ferromagnetic 
material, and air. Level set based topology optimization [3] is 
employed to determine the innovative material distributions, 
and this requires N level set functions to represent the 2N 
different materials [4]. Therefore two level set functions are 
required to design PMSM consisting of three materials. It is 
important to define which material is used in which material 
domain since the design sensitivities for each case result in 
different numerical values. Six cases are revealed with 
different sensitivity values depending on the selection of the 
material domains. In order to compare the six cases, an 
optimization problem is formulated to minimize the sum of the 
difference of the target torque.  

II. PROBLEM FORMULATION 

A. Material expression using level set functions  

The sign of the level set function ( ) is used to classify the 

multi-material domains as shown in Fig. 1. To represent the 
material properties for the magneto-static analysis, the relative 

magnetic reluctivity (
rv ) and the residual flux density (

rB ) are 

defined by the level set functions ( ) as follows: 
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B. Sensitivity analysis 

The topological derivative of the objective function ( F ) in 
the level-set based topology optimization method [5] is 
defined by 
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By applying the adjoint variable method for the magneto-
static problem, the design sensitivity can be derived as 
follows: 
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where Az is the magnetic vector potential,  R is the governing 
equation of the magneto-static field including permanent 
magnet, and  is the magnetic permeability of air.  
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